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Pawley's [Acta Cryst. (1976), A32, 921-9221 disproof of the C & D method of applying constraints in crystallographic 
refinements [Chesick & Davidon (1975). Acta Cryst. A31, 586-591] is incorrect. Nevertheless, the C & D method is 
incorrect. Both the method and its disproof clearly fail for the particular case of linear least-squares with linear 
constraints. The method can be corrected in this case but not for the non-linear case. 

Pawley (1976) (P2)recently criticized a method (Chesick & 
Davidon, 1975) (C & D ) o f  applying constraints alternative 
to the strict constraints described by Pawley (1972) (P1). C 
& D suggested that each cycle of least-squares refinement 
should be unconstrained and the constraint applied to the 
parameter shifts. Pawley's criticisms were (i) that the C & D 
procedure loses the economic advantage of a much reduced 
cycle time and the ability to make use of computers with 
restricted storage capacity, (ii) that the programming 
involved is probably no simpler than with the P 1 method, (iii) 
that the two methods converge to different parameter values 
and (iv) that the result obtained by the C & D procedure is 
probably not significantly different from that obtained by 
doing the constraining averages on the result of an 
unconstrained refinement. 

The purpose of this note is to clarify the question behind 
criticism (iii). While agreeing with P2 regarding the result, we 
point out that Pawley's argument is incorrect. Pawley 
confuses a particular method of finding a minimum of the 
least-squares residual with the properties of the minimum 
itself. 

While the C & D procedure is, of course, designed for 
non-linear problems and Pawley's 'disproof' of it had non- 
linear problems in mind, both the method and the disproof 
make no assumptions about the necessity of non-linearity. 
Thus, if both the method and its disproof are invalid for 
linear problems, they will be generally invalid for non-linear 
problems. 

Many texts on least squares (e.g. Hamilton, 1964) have a 
section on linear least squares with linear constraints, with 
equations explicitly writing the final constrained parameters 
in terms of the final unconstrained parameters, the constraint 
matrix and vector, and the covariance matrix of the 
unconstrained parameters. The resulting constrained param- 
eters are different from those which would be obtained from 
the application of C & D equation (4). This is most easily 
seen from the geometrical formulation of least squares 
(Price, 1978). In this approach least-squares estimation 
consists of projecting the observed vector, yObS, a vector in n- 
dimensional measurement space, into the calculated vector, 
~,c~Jc, a vector in m-dimensional fit-space, this being a sub- 
space of measurement space. A set of 1 independent linear 
constraints results in the constrained fit-space being an 
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(m - l) dimensional subspace of the unconstrained fit-space. 
The linearity of the problem results in these fit-spaces being 
vector spaces. The least squares with constraints problem 
then becomes finding y~-"¢a~¢, the projection of yObS into the 
constrained fit-space. Since all these spaces are vector spaces 
this problem is equivalent to first projecting yObS into the 
unconstrained fit-space and then projecting this projection 
into the constrained fit-space. All calculated vectors ycalc and 
yCa~c are related to parameter values, 0 and 0~ by the design 
matrices, T and T~ 

y~,C = TO (1) 

g a , c =  To0: (2) 

Thus, the second projection can just as well be done in 
parameter space as in fit-space. First, however, we must find 
the correct least-squares metric tensor for parameter space. 
In measurement or fit-space this metric tensor is the weight 
matrix W = V -~ with V the variance matrix of the observa- 
tions. As shown by the following arguments, in parameter 
space it is V~ ~, the inverse of the variance matrix of the 
parameters, which is known to be (Hamilton, 1964) 

V~ l = TtWT, (3) 

where the superscript t refers to the transpose of a matrix. 
The projection in fit-space is achieved by minimizing 

S = II ~calc _ yc~CalC 112 z (~calc -- Yc'Calc t) W (y'C"C - Yc"calc'] 
(4) 

with respect to ~ca~c. Since (1) applies to all vectors in the 
unconstrained fit-space we have ~,¢alc _ T0 and :~calc = T0~. 
Substitution in (4) gives 

S = (0 -- Oc)t(TtWT)(O - Oc) 

which by (3) is 

s = ( 3 -  6c ) 'v~ ' (rc ) - -  ~16- 6c"~. 
(5) 

In these expressions Ilxlly (or Ilxlls) means the length of x as 
measured by the metric tensor W (or V~ ~) in fit-space (or 
parameter space). Thus minimization of (4) is equivalent to 
minimization of (5). Expression (5) is a weighted version of 
C & D equation (4). 

For linear least squares and linear constraints we have 
thus shown that the C & D procedure Iminimization of the 
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unweighted residual by their equation (4)] is incorrect and 
that, while the constrained parameters can be obtained from 
the unconstrained parameters, this requires the minimization 
of the weighted residual (5) or equivalently, by the applica- 
tion of the usual equations (Hamilton, 1964). 

Since there is a procedure for finding the constrained 
parameters from the unconstrained parameters we have also 
shown, by counter-example, that Pawley's disproof is 
incorrect. His argument rests on the lack of an inverse to his 
equation ( 1): 

P, =f,({ p~}). 
Here the {Pi} are the 'usual structure parameters' and the 
{pfl form 'the set of parameters in the constrained configura- 
tion'. There are two interpretations we can give this equation: 
firstly, that any constrained configuration (specified by the 
parameters {p j}) can be described in terms of the original 
parameters {Pi}; and secondly, that for any given set of data, 
if a constrained refinement results in parameters I Pj}, then an 
unconstrained refinement will result in parameters {Pi} as 
given by the function fe  The first interpretation is a true 
statement, but in fact there is an inverse to the equation since 
it is generally 1-1. The inverse is defined only on a subspace 
(the range of the function), of parameter space. It is apparent 
from Pawley's arguments subsequent to his equation (1), 
however, that he intends the second interpretation. Now in 
this case the equation is patently incorrect, as there does not 
exist such a function f ,  even in the linear least-squares, linear- 
constraints case. There are many different sets of data which 
will result in the same set of constrained parameters but 
different values for the unconstrained parameters. This is 
because of the dimensionality of the two parameter spaces. 
However, as we have shown above (and as shown by 
Hamilton, 1964) the inverse to the equation does exist for the 
case of linear least squares with linear constraints. 

When the function to be fitted is non-linear in the param- 
eters we cannot rule out the possibility of an inverse to 
Pawley's equation (1) from dimensionality arguments. How- 

ever, since fit-space is no longer flat, we cannot say that the 
projection of y into constrained fit-space is necessarily the 
same as the result obtained by first projecting y into the 
unconstrained fit-space and then projecting this projection 
into the constrained fit-space. In addition we cannot equate 
expressions (4) and (5), i.e. we cannot even do the latter pro- 
jection in parameter space. Thus the C & D method lwith 
their equation (4) replaced with (5) abovel is invalid for non- 
linear problems. (The P1 method does not, of course, suffer 
from these restrictions.) 

Aside from these rigorous objections we suspect that the C 
& D method is likely to be slowly convergent. Algorithms for 
non-linear least-squares generally only become rapidly 
convergent when the parameters approach the final values. 
The C & D method results in the starting parameters for 
every cycle being held some distance away from the final 
values. It is not obvious that true convergence will ever be 
reached. 

With reference to P2, we would also like to point out that 
the many different methods of minimizing a sum of squares 
generally lead to different parameter shifts even when 
converging to the same minimum. The argument that two 
procedures with differing parameter shifts must converge to 
different minima is incorrect. 
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The central-bond shortening in disubstituted benzenes having an electron-withdrawing group and an electron-releasing 
group in para positions is well known. However, even in several disubstituted benzenes having electron-withdrawing 
groups in both para positions, X-ray analysis shows a central-bond shortening. In monosubstituted benzenes, the middle 
bonds and the bonds farthest from the substituent show bond shortenings which cannot be accounted for by librational 
motion alone, it is pointed out that these apparent shortenings are caused by the asymmetry of the charge distribution 
around the C atoms bonded to the H atoms. This charge asymmetry is to a large extent an artifact of the refinement 
procedure. 

The shortening of the central bonds in disubstituted benzenes 
having an electron-withdrawing group and an electron- 
releasing group in para positions is well known. However, 
the central-bond shortening has also been observed, although 
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generally to a lesser extent, in several disubstituted benzenes 
having electron-withdrawing groups in both para positions, 
e.g. in p-nitroacetophenone (Kim, Boyko & Carpenter, 
1973), ,-p-nitrobenzaldoxime (Bachechi & Zambonelli, 
1973), anti-4-nitro-N-methylbenzaldoxime (Bachechi & 
Zambonelli, 1975) and in several other structures; these 
structures were all determined at room temperature by X- 


